A Note on Matrix Versions of Kantorovich–type Inequality

نویسنده

  • FEIXIANG CHEN
چکیده

Some new matrix versions of Kantorovich-Type inequalities for Hermitian matrix are proposed in this paper. We consider what happens to these inequalities when the positive definite matrix is allowed to be positive semidefinite singular or indefinite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hadamard Product Versions of the Chebyshev and Kantorovich Inequalities

The purpose of this note is to prove Hadamard product versions of the Chebyshev and the Kantorovich inequalities for positive real numbers. We also prove a generalization of Fiedler’s inequality.

متن کامل

Improvements of Young inequality using the Kantorovich constant

‎Some improvements of Young inequality and its reverse for positive‎ ‎numbers with Kantorovich constant $K(t‎, ‎2)=frac{(1+t)^2}{4t}$‎ ‎are given‎. ‎Using these inequalities some operator inequalities and‎ ‎Hilbert-Schmidt norm versions for matrices are proved‎. ‎In‎ ‎particular‎, ‎it is shown that if $a‎, ‎b$ are positive numbers and‎ ‎$0 leqslant nu leqslant 1,$ then for all integers $ kgeqsl...

متن کامل

A note on the Young type inequalities

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

متن کامل

Convexity conditions of Kantorovich function and related semi-infinite linear matrix inequalities

The Kantorovich function (xT Ax)(xT A−1x), where A is a positive definite matrix, is not convex in general. From a matrix or convex analysis point of view, it is interesting to address the question: When is this function convex? In this paper, we prove that the 2dimensional Kantorovich function is convex if and only if the condition number of its matrix is less than or equal to 3 + 2 √ 2. Thus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013